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C-1% radicals in nucleosides
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Abstract

C-1% radicals in modified nucleosides have been generated by a variety of methods. Synthetic methodologies based on radical
cascade reactions for the preparation of anomeric spironucleosides have been developed. Structural information on C-1% radicals
has been obtained and their fate in anoxic or aerobic conditions has been studied. © 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

A number of agents are able to react with DNA and
generate macromolecular radical species [1–4]. These
processes are of considerable importance since they can
lead to base modifications or strand scissions. In fact,
abstraction of a hydrogen atom from deoxyribose pro-
duces carbon-centered radicals on the sugar which can
be transformed into strand scissions. As research pro-
gresses in the area of the mechanism of attack of
oxidative DNA cleavers, it becomes evident that hydro-
gen abstraction from the C-1% position is involved in
many cases (Scheme 1) [2–4].

For example, abstraction of a hydrogen atom from
the C-1% position of specific cytidine residues of the
sugar backbone of DNA corresponds to a minor event
in the action mechanism of neocarzinostatin, a member
of the enediyne family of antibiotics [5]. Coupled with a
major lesion involving hydrogen abstraction from the
C-5% position of a thymidine residue in the opposing
strand, this event can lead to a double strand scission
or site-selected mutagenesis. Evidence has also been

presented which indicates that the glutathione-activated
neocarzinostatin chromophore also generates bis-
tranded lesions in DNA–RNA hybrids, involving C-1%
hydrogen abstraction from the targeted ribonucleotide
and C-5% chemistry at the targeted deoxyribonucleotide
[6]. There are several other known cleavers which are
able to generate C-1% radicals. It is worth mentioning
the action of dynemicin and bis(1,10-phenanthroline)-
copper, two DNA cleavers which primarily abstract
hydrogens from the C-1% position [7]. The fate of the
C-1% radicals under either anoxic or aerobic conditions
is currently under dispute [2,3].

On the other hand, it is envisaged from the recent
literature in the nucleoside area that C-1% radicals may
constitute useful intermediates which can generate valu-
able chemistry currently unexplored but potentially im-
portant in medicinal chemistry. In fact, there are a
number of natural products reminiscent of nucleosides
which contain modifications in the C-1% position. Exam-
ples can be found in angustamycin C (1) which has
interesting antiviral and antitumor properties [8] or in
hydantocidin (2) a natural spironucleoside with herbici-
dal and plant growth regulatory activities [9]. Anomeric
spironucleosides are useful modifications of natural nu-
cleosides in that they contain the base unit in a fixed
conformation around the N-glycosidic bond. This
property has made them good candidates in structure–
activity studies for determining the ideal torsion angle
around the N-glycosyl bond for optimal biological
activity [10]. However, the availability of anomeric
spironucleosides is limited since the presence of the baseScheme 1.
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Scheme 2.

uracil with adenine in the same diastereotopic configu-
ration [12]. These results suggest that (i) polar effects
play a very important role in enhancing the rates and
(ii) C-1% radicals are stabilized substantially by the
presence of the base and that the degree of stabilization
is similar for purine and pyrimidine moieties.

3. Indirect formation: 1,5-radical translocation

In this section we report a 1,5-hydrogen transfer as
outlined in Scheme 4 used as protocol to access C-1%
radical intermediates in both ribo and 2%-deoxyribo
series [13–15].

Reaction of compound 6 with the Bu3Sn� radical,
generated by photolysis of hexabutylditin with 300 W
of visible light, provided the spironucleoside 7 as the
sole product in 37% yield (Scheme 5) [15].

When the same conditions were applied to the pro-
tected 2%-deoxynucleoside 8, a mixture of anomeric
spironucleosides 9 and 10 was obtained in a 2:1 ratio
(Scheme 6) [13,15].

in the anomeric C-1% position of nucleosides compli-
cates any synthetic plan for direct modification on that
position.

In order to understand better the fate of C-1% radicals
as well as their usefulness in the synthesis of complex
molecules, we have undertaken a systematic investiga-
tion by utilizing modified nucleosides as models which
allow for the specific generation of C-1% radicals. Herein
we summarize recent results from our laboratory.

2. Indirect formation: 1,2-migration of an acyloxy
group

One of our first attempts to generate C-1% radicals
involved a b-(acyloxy)alkyl rearrangement of a C-2%
radical into the anomeric position (Scheme 2) [11,12].

The C-2% radicals were obtained by reaction of the
halopivaloates 4 and 5 with tributyltin hydride under
radical chain conditions (Scheme 3). By applying free-
radical clock methodology the rate constants for these
rearrangements were measured and found to be the
same within experimental error upon substitution of

Scheme 4.

Scheme 5.

Scheme 3.
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Scheme 6.

The mechanism that we conceived for these transfor-
mations comprises a cascade of free radical reactions
involving bromine abstraction from C-8 by the stannyl
radical to generate the vinyl radical species, followed by
a 1,5-radical translocation to the anomeric position, a
5-endo-trig cyclization of the anomeric radical onto the
proximal double bond and, finally, product formation
by bromine atom ejection. Kinetic information for both
the 1,5-radical translocation and the 5-endo-trig cycli-
zation was obtained and the factors controlling the
stereochemistry of this cyclization were discussed [15].
Furthermore, compounds 9 and 10 were converted to
spironucleosides 11 and 12 in 75 and 68% yield, respec-
tively, by selective hydrogenation of the double bond
using a 5% Rh/Al catalyst in methanol [15].

When compound 13 was subjected to photolysis with
visible light in the presence of PhI(OAc)2 and I2 in
cyclohexane at room temperature, a major product was
obtained in 49% yield (Scheme 7) whose structure 14
was determined by X-ray crystallography [15].

When the same conditions were applied to the pro-
tected 2%-deoxyribo analogous 15, a mixture of
anomeric spironuleosides 16 and 17 was obtained in
65% yield and in the anomeric composition b:a=1:1
(Scheme 8) [14,15].

The suggested mechanism involves photolysis of the
initially formed hypoiodite generating an alkoxy radical
intermediate which undergoes a Barton-type hydrogen
migration to generate the anomeric C-1% radical. Reac-
tion of the C-1% radical with iodine generates the un-
stable C-1% iodo derivative which undergoes anionic
cyclization with the generation of the observed product.

It is worth pointing out that the steric hindrance
induced by the C-2% substituent is most probably re-
sponsible for the stereospecificity of the cyclization in
the ribo series.

4. Direct formation: photolysis of C-1% tert-butyl
ketone

Ketone 18 was synthesized either by revising a re-
ported procedure starting from D-fructose (11 steps) or
from a new route starting from uridine (seven steps)
and with a much higher overall yield [16,17]. Then,
ketone 18 was used for the photolytic generation of
specific C-1% radicals which were studied spectroscopi-
cally (Scheme 9). Electron spin resonance data com-
bined by theoretical studies indicate that the
configuration of the C-1% radical is strongly bent and
that the unpaired electron is poorly delocalized in the
uracil moiety [18].

Radical 19 reacts fast with alkylthiols to give mix-
tures of a and b anomers of 2%-deoxyuridine (Scheme
10) [19]. The bimolecular rate constant for the reaction
of radical 19 with glutathione was found to be 4.4×106

M−1 s−1 at 20°C [20]. Radicals 19 in the presence of
oxygen produced 2%-deoxyribonolactone and uracil
(Scheme 10) [19]. A detailed investigation of the reac-
tion mechanism for the formation of 2%-deoxyribonolac-
tone was performed by labelling experiments and
kinetic studies using laser flash photolysis [19,20].
Scheme 10 shows in some details the reaction mecha-
nism. C-1% radical adds to molecular oxygen with a rate
constant of 1×109 M−1 s−1 to give the peroxyl radical
20. In its turn, the radical 20 eliminates the superoxide
radical anion with a rate constant of 2×104 s−1 to give
the corresponding carbocation 21 which reacts with
water to produce the observed products.

Scheme 7.
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Scheme 8.

Scheme 9.

Scheme 10.

5. Conclusions

C-1% radicals are no longer elusive intermediates and
can be generated by a variety of methods. We have
shown that C-1% radicals can play an important role in
the radical cascade synthesis of anomeric spironu-
cleosides. In the near future we expect to see more
application of this kind in the synthesis of modified
nucleosides. The specific generation of C-1% radicals
allowed us to better understand their fate under anoxic
or aerobic conditions; however, investigation of their
chemistry in more complex systems like oligonucleo-
tides will be of great importance.
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